APPLICATION OF SOMMERFELD—MALYUZHINETS
INTEGRAL TO DIFFUSION PROBLEMS IN WEDGE-
SHAPED REGIONS WITH INHOMOGENEOUS BOUNDARY
CONDITIONS OF THE FIRST AND SECOND KIND

F., P. Plachko and T. L. Perel'man* UDC 536.24.02

A Sommerfeld —Malyuzhinets integral representation is found which solves unsteady diffusion
problems in wedge-shaped regions.

In the present paper we investigate unsteady diffusion problems {parabolic or hyperbolic equations) for
zero-value initial conditions in wedge-shaped regions in the case of boundary conditions of the first and second
kind in the presence or absence of a first-order chemical reaction. After applying the Laplace transform
[1], these problems can be written in the form

Llv(r, ¢; =0, 0<<r<Coo, —~0Lo<O, 1)
v<<oo, r=0 —O0OLpKLD, 2)
v=0 r=00, —OLpLD, (3)
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where L = (1/1) (8/9r) [r(8/0r)] + (1/19) (8°/0¢?) —pu?uisacomplex number., The solution of problem (1)-(4)
can be sought in the form of a Sommerfeld —Malyuzhinets integral [2-11], i.e., in the form

v(r, ¢; W)= ——lf -exp {pr cos (¢ — &)} H (&) do..
oni (5)
v
Here the kernel exp{urcos ((p—a)} satisfies differential equation (1); the contour y must be such that boundary
conditions (2)-(3) are satisfied; the function H(w, &) is such that condition (4) is satisfied.
In order to fix the contour v it is sufficient to make the following change of variable:
—z=0p—oa; dz=do. €)
Using (6) we bring (5) to the form
v 6 W= f exp {ur cos 2} H (2 + ¢) d&. 0
Tt
' v

The inhomogeneous parts of boundary conditions (4) — the functions FI‘T(r, u) and F21t (r, p) — can be expressed
with the aid of the Malyuzhinets transform [12]:

F;-F (r, W) = E;—_ S exp {ur cos z} T wds j=1,2 (8
i
5
iz = — Lséni 5 éxp{—. preosz) Ff(r, wdr; j=1, 2. 9
0

Inserting expressions (7) and (8) into boundary conditions (4) and remembering that
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duir, @i 1) _ W .g sinzexp{urcosz} H (z + ) dz, (10)
0 2mti
¥

we obtain the following for boundary conditions of the first kind for ¢ = ¥ &:

- f exp {prcos 2} [H (2 + 9) — FF (& 9] dz =0, (11)
It
v

and the following for boundary conditions of the second kind:

—?l—_— § exp {pr cos 2} [sinzH (z + ¢) — 3 (z, w)] dz =0. (12)
i
. v

A necessary and sufficient condition for integrals (11) and (12) to equal zero is that the expressions in
the square brackets be even [8,9]; from this we find the following functional equations corresponding to equa-
tions (11) and (12):

HeFO)—H(—zF ®)=2T & ), 13)
HEF®)+ H(—zF D) =23 (2, wisinz. (14)
For mixed boundary conditions, for instance, the first kind for ¢ = + & and the second kind for ¢ =— &, we

obtain the following equations:

Hz+@)—H(—2z4+ D)= 2]:‘11— (Zvl 1),

(15)
Hz—®)+H(—2—®) =27 & -
All three systems of equations (13)-(15) can be written compactly in the form
He+ D) —eH(—z+ D) =Q" (2), _
(16)

Hz—®)—e,H(—z— @) =Q (2).
Here for v = F,*(r, p) and ¢ = =&, the quantities &; = ¢, =1 and
C@=2mw QCO=27&w
for (1/ur)(dv/5¢) =F,*(r, p)and ¢ = +&, the quantities g, =&, =—1 and
Q@ =2ff @ wisinz, Q@ (=27 (2 Wisinz
for v=F;%(r, p) and ¢ =+ &, and for (1/pr)(®v/dr) = F; (r, p) and ¢ =—&, the quantities ¢; =1, & =—1 and
Q @) =2f z W, Q (2)=2f> (z wisinz.

Following [13-18] we seek the solution of functional equations (16) in the form

H(@@):==u(@) o). 17
Inserting (17) into (16) gives the following functional equations
G(z=D) —0 (D) =Q" (I/u(z+ D), 18)
u(z+®) —eu(—z-+0) =0,
U@E—®) —eu(—z— @ =0, 19)
We have for the solution of Egs. (19) [18]
g=gy =1, u@)==1, g=¢g=-—1, u(z)=_cos(nz/20),
. (20)
g =1, &=—1, u(?)=sinln(z+ @)/4D],

and the solution of (18) we seek in the form of a sum, i.e.,

0(2) = 01(2) + 0, (z — 20). 21
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Inserting expression (21) into (18) leads to the following inhomogeneous functional equations:

012+ D) —0y(—z+ D)= Q" (2/uz + D),

0, @—®)— g, (—z2—D) =0, {22)
52+ ®) —0y(—z+ @)= Q )/u(z— D),
0, (2— @) — 0, (—z— D) = 0. (23)

We note that Q* (z)/u(z + &) and Q™ (z)/u(z— &) are always odd functions. As shown by Tuzhilin [18], the
solutions of functional equations {22) and {23) can be written, respectively, in the form

i

. [ @z i Q* (z) sin (wt/20) d
0@ =sin ( ¥ ) : 5 11:()51 ( m): . [ qz ' (24)
. 20 8@ u(t 4 @) cos” (—— ) lcos ( ) — sin | —
- 20 | 20 20
. m{ Tz i ~ Q™ (7) sin (n1/20) dv
0, (2) = sin ( ) - (25)
’ 20 / 8D -Jf u (1 — @) cos” (ﬂ—) os /L)a—sin ihid )
~i= 20 \ 20 20
where n and m are numbers such that Q* (7)/[u(T + &) cos? (71/2®)] and Q™ (1)/ [u(T— &) cos™ (x7/2&)] de-
crease exponentially for I, (r)! — =< and Re (1) =0.
Utilizing expressions (17) and (21), solution (7) can be expressed as follows:
vir, v, p) = _2;_: j exp{preosz}ufz+ @ io (z 4 @) + 0, e + 9p— 20)1dz. (26)
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